
1. Introduction
The mountain snow located in the Sierra Nevada (SN) receives precipitation during winter and gradually releases 
melting water through the spring and dry summer, acting as low-cost water storage. The snowmelt runoff is 
captured by reservoirs and released to the downstream community, contributing to 60% of the state’s consumptive 
water supply (Avanzi, 2018). The snowpack also plays a vital role in the survival of the Sierra Nevada bighorn 
sheep, an endangered subspecies of bighorn sheep living in the mid-high elevations of the SN. During winter, 
aboveground snow impedes the travel of bighorn sheep and reduces the forage availability (Conner et al., 2018), 
while melting snow supplies soil water for plant growth and influences the nutrition level of bighorn sheep in the 
following spring and summer (Monteith et al., 2014; Stephenson et al., 2020).

The general balance between snowmelt water supply and water demand in the SN is challenged due to decreased 
peak snow volume and earlier snowmelt in a changing climate (Huning & AghaKouchak,  2018; Kapnick & 
Hall,  2010; Wanders et  al.,  2017). Light-absorbing particles (LAPs) in snow, mainly dust and black carbon 
(BC), enhance melting by decreasing surface albedo in the visible and near-infrared, referred to as the “instan-
taneous snow darkening effects” (Hadley & Kirchstetter, 2012; Hadley et al., 2010; Qian, Wang, et al., 2014; 
Qian, Yasunari, et al., 2014; Skiles et al., 2018; Warren & Wiscombe, 1980). The darkened snow absorbs more 
sunlight, accelerating snow aging, increasing snow grain sizes, and exposing more dark surfaces, known as the 
“snow albedo feedback” which further reduces surface albedo (Myhre et al., 2013). The snow darkening effects 
have large spatial variability and are influenced by the LAP emissions, transport, and post-depositional processes 
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(Kang et al., 2020). Over the Himalaya and the Arctic, LAPs in snow are found to have comparable radiative 
forcing (RF) to greenhouse gases (Flanner et al., 2007). Snowpacks in the SN also receive large amounts of LAPs 
from local and remote sources. The ambient dust in the atmosphere is produced from sources such as the dry 
Owens Lake and the Sonoran Desert (Duniway et al., 2019; Reheis, 1997; Reheis & Kihl, 1995) or transported 
from as far away as the Sahara and Asia (Creamean et al., 2013). Meanwhile, BC emitted from coastal metropol-
itan regions, forest fire, or originating from Asia can also be carried to the SN by prevailing westerlies (Hadley 
et al., 2010; Huang et al., 2020).

While impurity effects have been extensively observed and modeled in the Himalaya and the Rocky Moun-
tains (C. Wu et al., 2018; He et al., 2018; Niu et al., 2018; Oaida et al., 2015; Painter et al., 2007, 2010; Qian 
et al., 2011; Rahimi et al., 2020; Sarangi et al., 2019, 2020; Skiles & Painter, 2017, 2018), their quantification in 
the SN is lacking. Observational studies have focused on specific areas and reported a wide range of RF induced 
by impurities in snow. Sterle et al. (2013) reported a BC concentration of 20–429 ng g −1 and a dust concentra-
tion of 1–44 μg g −1 on the snow surface of Mammoth Mountain, which combined contributed to 20–40 W m −2 
RF during the 2009 ablation season. Airborne observations over Kaweah/Kings river basins showed that LAPs 
reduced albedo from 0.70 to 0.55 and caused an RF of 0–150 W m −2 (Seidel et al., 2016). The LAP effects show 
large spatial variability; it is therefore difficult to apply the conclusions to other basins or make inferences at the 
regional scale.

The Weather Research and Forecasting (WRF) model coupled with online chemistry (WRF-Chem) has been 
widely used to assess the interactions between aerosols and snow at the regional scale. As a widely used regional 
climate model, WRF has been shown to capture fine-scale precipitation and snow features (Chen, Duan, 
et al., 2019; Chen, Leung, et al., 2019). An early WRF-Chem study found that BC reduced albedo by 0.01–0.03 
and caused an RF of 1–3 W m −2 in the SN (Qian et al., 2009). The result was generally confirmed by Hadley 
et al. (2010), which used observed BC concentrations in the NCAR CCM3_CRM radiation model to calculate 
RF induced by BC in snow. Neither study considered the effects of dust in snow, which was observed to play a 
dominant role in the eastern SN. A recent modeling study by L. Wu et al. (2018) moved further to assess the aero-
sol–snow interactions due to both BC and dust and compared it with other pathways of aerosol effects: aerosol–
radiation interactions and aerosol–cloud interactions. Yet the simulated albedo change has not been thoroughly 
evaluated due to a lack of observations in the SN. The recently developed satellite products, such as the MODIS 
Snow-Covered Area and Grain size algorithm (MODSCAG; Painter et al., 2009) and Snow Property Inversion 
from Remote Sensing (SPIReS; Bair et al., 2020) retrieve snow properties on the regional scale with complete 
temporal coverage. They provide instantaneous snow darkening effects for the time satellite overpasses the target 
pixels, which is especially important in regions with rare site measurements. In addition, the instantaneous dark-
ening effects and snow albedo feedbacks associated with snow aging and snow cover change are two important 
processes influencing LAP’s darkening effects. Their relative contributions have not been well understood in 
previous studies. Furthermore, there is a lack of process-level analyses on how snow darkening effects evolve 
with LAPs depositions, precipitation, snow aging, and meltwater runoff across the SN, which would facilitate a 
more realistic prediction of snow darkening effects in a changing world.

The objective of this study is: (a) to evaluate the WRF-Chem representation of snow properties and snow dark-
ening effects against satellite retrievals and elucidate model uncertainties in the SN; (b) to separate and quantify 
instantaneous darkening effects and the snow albedo feedbacks associated with snow aging and snow cover 
change; (c) to comprehensively analyze the snow darkening effects caused by LAPs’ deposition, precipitation, 
snow aging, and meltwater scavenging processes.

2. Model and Method
2.1. Model and Input Data

We used the state-of-the-art WRF-Chem version 3.9 coupled with the Community Land Model (CLM4) land 
surface scheme, and the Snow, Ice, Aerosol, and Radiation model (SNICAR) to study snow evolution in the 
SN. This coupled model is referred to as WCCS hereafter. In WCCS, we chose the Model of Ozone and Related 
chemical Tracers (MOZART) chemistry module (Emmons et  al.,  2020) and the Model for Simulating Aero-
sol Interactions and Chemistry with four bins (MOSAIC 4-bin) aerosol model (Zaveri & Peters,  1999) for 
comprehensive treatment for gas chemistry and aerosol processes (Table S2 in Supporting Infomation S1). The 
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SNICAR simulates the snow properties and associated radiative heating rates of multilayer snowpack (Flanner 
et al., 2009, 2021) and is used within CLM, which provides the number of snow layers and meltwater trans-
port from each layer (Oleson et al., 2010). Following the methodology in Zhao et al.  (2014), we coupled the 
WRF-Chem simulated aerosols with CLM-SNICAR to simulate the aerosol radiative effects in snowpack. Modi-
fications have been made as we used the MOZART in WRF-Chem v3.9 instead of the CBM-Z (carbon bond 
mechanism) in WRF-Chem v3.5 in Zhao et al. (2014). A detailed description of the coupling strategy is provided 
in Text S1 of Supporting Information S1.

The meteorological initial and lateral boundary conditions were derived from the ECMWF Reanalysis v5 [ERA5 
(Hersbach et al., 2020)] at 0.25° horizontal resolution and 6 hr temporal intervals. Spectral nudging was employed 
with a timescale of 6 hr above the boundary layer to reduce the drift between ERA5 reanalysis data and WRF’s 
internal tendencies (von Storch et al., 2000). The MYJ (Mellor–Yamada–Janjic) planetary boundary layer scheme 
(Hong et al., 2006), Morrison 2-moment microphysics scheme (Morrison et al., 2009), Grell-Freitas cumulus 
scheme (Grell & Freitas, 2014), and RRTMG longwave and shortwave radiation schemes (Iacono et al., 2008) 
were used in this study.

Anthropogenic emissions provided by the US EPA 2017 National Emissions Inventory (US Environmental 
Protection Agency, 2021) were updated every hour to account for the diurnal variability. Fire INventory from 
NCAR version 2.4 (FINNv2.4) provided daily biomass burning emissions for the years 2018 and 2019 (Wiedin-
myer et al., 2014). Biogenic emissions were generated using the Model of Emissions of Gases and Aerosols from 
Nature (MEGAN) (Guenther et al., 2006). Dust emissions were calculated “online” using the GOCART dust 
scheme (Ginoux et al., 2001), and here, we increased the emission parameter from 1 𝐴𝐴 ×  10 −9 to 𝐴𝐴 5 × 10

−9 kgm−5
s
2 

C in Equation S1 in Supporting Information S1 to match the measurements of surface dust concentration (Text 
S2 in Supporting Information S1). The chemical initial and boundary conditions were provided by CAM-Chem 
(Buchholz et al., 2019).

2.2. Numerical Experiments

The WCCS experiment was configured to cover all of California, Nevada, and part of the surrounding states 
(126.12–112.86°W, 32.3–43.0°N) with 110 × 120 grid cells at 10 × 10 km 2 horizontal resolution (Figure 1a). 
We used 35 vertical model layers from the surface to 10 hPa with denser layers at lower altitudes to resolve the 
planetary boundary layer. The simulation period ranged from 20 September 2018, to 31 August 2019, to allow for 
the accumulation and ablation of snowpacks in a water year. Only the results after 1 October 2018 were analyzed 
to minimize the impacts of initial conditions. To quantify the effects of LAPs in snow with and without snow 
albedo feedbacks, we designed the following two experiments:

1.  WCCSaero simulated the direct and indirect effects of aerosols in the atmosphere and the effects of LAPs in 
snow.

2.  WCCSnoaero is similar to WCCSaero except that the impurity effects in snow were not included. The deposited 
LAPs in snow were manually set to 0 in CLM-SNICAR.

WCCSaero calculated the instantaneous snow albedo reduction and RF caused by LAPs in every model timestep 
by contrasting the dirty and clean snow albedo under current snow cover, which can be used to evaluate the LAPs’ 
instantaneous snow darkening effects. The difference between WCCSaero and WCCSnoaero showed the changes of 
snow albedo and RF due to both instantaneous snow darkening effects and snow albedo feedbacks associated 
with snow aging and snow cover change. The RF refers to the change in net (down minus up) solar irradiance at 
the surface caused by the impurity effects (instantaneous darkening effects with/without snow albedo feedbacks).

2.3. Validation Data

The simulated aerosols from 2018 October to 2019 August were compared against PM2.5 observations from U.S. 
EPA Outdoor Air Quality Data (US Environmental Protection Agency, 2021) and IMPROVE (Interagency Moni-
toring of Protected Visual Environments, Access date October 2021 [Malm et al., 1994]), and aerosol surface 
concentration from IMPROVE measurements. We evaluated the simulated snow water equivalent (SWE) with 
the SNODAS (Snow Data Assimilation System), which assimilated satellite-derived, airborne, and ground-based 
snow observations into an operational snow accumulation and ablation model (Barrett, 2003), and we evaluated 
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Figure 1. (a) Sierra Nevada region and bighorn sheep habitat, the inserted plot shows WCCSaero simulation domain (D01); (b) modeled AOD with wind vector 
overlaid; (c) surface concentrations of dust, black carbon (BC), OC, and SO4 in the model compared with IMPROVE observations; (d)–(e) snow cover fraction (SCF) 
in model and SPIReS; (f) daily SCF in WCCSaero and SPIReS averaged over the Sierra Nevada; (g)–(i) same as (d)–(f) but for snow water equivalent (SWE). Variables 
in panels (b)–(e) and (g)–(h) are averaged over October 2018 and August 2019.
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snow cover fraction (SCF) with SPIReS retrievals (Bair et al., 2020). SPIReS was also used to estimate albedo 
degradation due to LAPs using the difference between modeled clean and observed (dirty) snow albedo. Both 
SNODAS and SPIReS have been upscaled to the model resolution before comparing them with the simulation 
results.

3. Results
3.1. Model Evaluation

Figure 1b shows the spatial distribution of AOD averaged from 2018 October to 2019 August. The AOD maxima 
in northern California are caused by the emissions during the Camp fire in November 2018, the most destructive 
and deadliest fire in California history. Additionally, high AOD values are found in the San Joaquin Valley and 
metropolitan areas such as San Francisco. The urban emissions are transported eastward and are blocked by 
mountains, producing a minimum AOD on the eastern slope of SN. Meanwhile, high AOD is also shown over 
southeastern California, due to the dust emissions from the Mojave Desert. The PM2.5 surface concentrations 
show a similar spatial distribution to AOD (Figure S1 in Supporting Information S1), with slight underestima-
tions compared to EPA and IMPROVE measurements in the Central Valley and overestimations in southern 
California. The modeled surface aerosol concentrations are generally within a factor of five of the observed 
concentrations from IMPROVE sites (Figure 1c). After the calibration of the GOCART dust scheme, simulated 
dust concentration appears unbiased compared to observed dust concentration. Nevertheless, anthropogenic aero-
sol concentrations (BC, organic carbon, and sulfate) are underestimated compared to the observations, which 
is a common problem in WRF-Chem simulations in California and might be related to the coarser model reso-
lution, uncertainties in emission inventory, and/or a lack of important chemical processes in the model (Wang 
et al., 2020; L. Wu et al., 2017; Zhao et al., 2013).

We evaluate SCF and SWE with multiple observations during the reference period. The heights of mountain 
peaks increase gradually from north to south (Figure 1a), and correspondingly, large SCFs are found in the south-
ern SN (Figures 1d and 1e). Snowpacks in low elevations (in both northern and southern SN) diminish in April, 
while snowpacks in the northern SN (>1,500 m elevation) melt out in May, and snowpacks at the top of the south-
east SN last until early August. Compared to SPIReS, WCCSaero reproduces the spatial distribution of SCFs with 
a correlation coefficient of 0.89 and appropriately captures the temporal evolution (Figure 1f). WCCSaero over-
estimates SCF in the southern part of the SN, which probably comes from precipitation biases due to the coarser 
terrain representation (not shown). WCCSaero underestimates peak SWE compared to SNODAS (Figures 1g–1i), 
yet the latter is shown to overestimate SWE in multiple years (Bair et al., 2016). For the 2019 water year, we use 
April–July as the ablation season to assess the LAP effects in snow in the SN.

3.2. Snow Darkening and Radiative Forcing Due To LAP Effects

LAP effects in the snowpack are closely related to the microphysical properties of snowpack, for example, snow 
grain sizes (SGSs). Annual SGSs from SPIReS range from 54 to 530 μm in the SN, with a regional average of 
285 μm (Figure 2a). The regional average SGS in WCCSaero is larger compared to the remotely sensed observa-
tions (315 μm) with a smaller spatial variability from 113 to 476 μm (Figure 2b). SGSs are small during winter 
and rapidly grow in spring because of snow grain metamorphism driven by high temperatures and strong incident 
irradiance (Flanner & Zender, 2006; Painter et al., 2003, 2013). Larger SGSs are found in the northern SN as 
warmer temperatures in low elevations facilitate snow aging processes. SGSs at higher elevations (>2,500 m) 
increase significantly in the late ablation period, producing larger SGSs at the annual time scale in SPIReS 
(Figure 2a). The model underestimates SGSs growth in the late melting season, therefore producing smaller SGSs 
at higher elevations as compared to SPIReS (Figure 2b). Retrieved SGSs at lower elevations might be underes-
timated as these pixels are normally partially covered by snow (SCF <90%) and are interpolated with relatively 
pure snow pixels (SCF ≥90%) from higher elevations with smaller grain sizes (Bair et al., 2020).

The concentrations of dust and BC on the snow surface range between 4 and 30 μg g −1 and 10–40 ng g −1 respec-
tively during March-May, with small variations among different elevations (Figure S2 in Supporting Informa-
tion S1). Both concentrations increase by a factor of 2–4 as snow melts. In June, the BC concentration decreases 
with elevation while the dust concentration peaks in both low elevations (1,500–2,000 m) and mid elevations 
(2,500 m). Our simulated LAPs concentration is generally consistent with Hadley et al.  (2010) who reported 
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BC concentrations of 5.3 and 6.9  ng  g −1 in falling snow during March–April 2006 at two SN locations. At 
Mammoth Mountain Ski Area, Sterle et al. (2013) found that BC concentration increased from 25 ng g −1 during 
January-April to 135 ng g −1 in May 2009 while dust concentration (12 μg g −1) remained relatively stable during 
the ablation season.

The dust and BC in snow cause snow darkening which accelerates the snow aging process (Lee & Liou, 2012; 
Qian, Yasunari, et al., 2014). Satellite retrievals show that the LAP-induced snow albedo decrease (𝐴𝐴 ∆𝛼𝛼 , larger 𝐴𝐴 ∆𝛼𝛼 
represents higher albedo reduction) during April-July can be as large as 0.068, with an average of 0.016 over the 
SN (Figure 3a). The 𝐴𝐴 ∆𝛼𝛼 in WCCSaero spans between 0.0 and 0.045, with a spatial average of 0.013 (Figure 3b), 
slightly lower than the estimate from SPIReS, especially at higher elevations. The estimated 𝐴𝐴 ∆𝛼𝛼 is larger in 
WCCSaero than SPIReS at lower elevations, while we note that SPIReS might have underestimated 𝐴𝐴 ∆𝛼𝛼 as it inter-
polates pixels at lower elevations with pure snow pixels (larger albedo) from higher elevations. In both the model 
and remotely sensed observations, the LAP-induced 𝐴𝐴 ∆𝛼𝛼 first appears at lower elevations with relatively higher 
temperatures and thinner snowpacks (Figure S3 in Supporting Information S1). The 𝐴𝐴 ∆𝛼𝛼 in the southern SN higher 
elevations is small in the early melting season and greatly increases in June and July, corresponding to the later 
snowmelt there. The model generally captures the spatial distribution of 𝐴𝐴 ∆𝛼𝛼 at the monthly scale but underesti-
mates 𝐴𝐴 ∆𝛼𝛼 in June and July. Throughout the SN, we find LAPs in snow cause an RF of 4.5 W m −2 (Figure 3c). The 
largest RF (14.6 W m −2) is found in the southeast SN with higher elevations, despite the lowest AOD there. This 
is because higher elevations have a later onset of snowmelt and therefore receive higher solar irradiance during 
the ablation period. The bighorn sheep habitat (Figure 1a red area), with an elevation of 2,840 m on average, is 
found to have an RF of 12.3 W m −2 during the melting season, which can reach 45 W m −2 in mid-June.

Figure 3d shows the evolution of 𝐴𝐴 ∆𝛼𝛼 caused by LAPs in snow at different elevations. The albedo degradation is 
less than 0.01 during March-April, which has a steep increase to 0.02 in late May. At lower elevations (1–2 km), 
the snow darkening effect peaks in late June before snowpacks melt out, while it reaches 0.08 in late August at 
the higher elevations. The corresponding RF on snow remains generally smaller than 5 W m −2 before June and 
rapidly increases to 15–22 W m −2 in July. The contribution from dust is larger in the eastern SN adjacent to the 
desert, while the contribution from BC is larger in the northwestern SN near the anthropogenic emission and fire 
emission sources (not shown). Here we focus on dust deposition and accumulation in snow, noting that the BC 
shows similar changes. The dust concentration on the snow surface varies from 10 to 100 μg g −1. During March–
May, the deposited dust particles are buried by frequent snowfalls, which add fresh snow with smaller grain sizes 
to the ground (Figure 3e) and cover surface dust with resulting concentrations at lower levels (Figure 3d). As a 
result, the LAP-induced 𝐴𝐴 ∆𝛼𝛼 and RF are small. The abrupt decreases of SGSs after snowfalls were also reported in 

Figure 2. Annual mean snow grain sizes (SGSs) in (a) SPIReS and (b) WCCSaero averaged over 2018 October to 2019 
August. The box plots illustrate the distribution of SGSs in SPIReS and WCCS throughout the Sierra Nevada with the mean, 
maximum and minimum values labeled on the left. The three contours with different thickness represent the elevations of 
1,000, 2,000, and 3,000 m.

(b) WCCS SGS(a) SPIReS SGS
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Seidel et al. (2016) but the magnitude is smaller than our simulation (330–180 μm in observations compared to 
∼450 to 100 μm in WCCSaero). As snowpacks melt, some dust particles are scavenged away in meltwater but most 
accumulate, especially at the snow surface (Doherty et al., 2010; Flanner et al., 2007), reflected by the increase of 
dust concentration by a factor of 4 in the late ablation season. The enrichment of dust concentration exacerbates 
the increase of 𝐴𝐴 ∆𝛼𝛼 and RF in June and July (Figure 3d).

The underestimation of LAP effects compared to the remotely sensed retrievals can be explained by several 
aspects. First, WCCSaero underestimates BC surface concentration and might also underestimate BC concen-
tration in snow and BC-induced LAP effects over the west slope of the SN. Furthermore, the radiative effect of 
LAPs in snow is amplified with increasing SGSs (Warren & Wiscombe, 1980). The underestimated 𝐴𝐴 ∆𝛼𝛼 at higher 
elevations in WCCSaero is probably due to insufficient SGSs increases in the late melting season, reflected by the 
smaller SGSs at the higher elevations compared to SPIReS (Figure 2). Besides, the version of CLM-SNICAR 
within WCCSaero does not consider the internal mixing of dust, which is shown to enhance 𝐴𝐴 ∆𝛼𝛼 by 10%–30% for 
dust relative to the external mixing states (He et al., 2019). Additionally, the structure packing of snow grains is 
suggested to enhance the LAP-induced albedo reduction (He, Takano, & Liou, 2017) which is not considered in 
the model. Conversely, grains are assumed spherical in SNICAR-CLM, which is not always a correct approxima-
tion (He, Takano, Liou, et al., 2017), yet nonspherical snow grains produce smaller radiative effects compared to 
spherical grains (Dang et al., 2016) and are thus not a cause of underestimated LAP effects. Moreover, SPIReS 

Figure 3. Spatial distribution of snow albedo decrease (𝐴𝐴 ∆𝛼𝛼 ) in (a) SPIReS retrievals (b) WCCSaero and (c) RF in WCCSaero during midday (10:00–14:00 LT) averaged 
over April–July. The box plots illustrate the distribution of 𝐴𝐴 ∆𝛼𝛼 (RF) throughout the Sierra Nevada with the mean, maximum and minimum values labeled on the left; (d) 
March–August albedo decrease (𝐴𝐴 ∆𝛼𝛼 ) during midday (10:00–14:00 LT) at different elevations in WCCSaero. The light blue bars show dust concentration on the top snow 
layer while the yellow bars show dust deposition, averaged over the Sierra Nevada; (e) Simulated RF at different elevations. The yellow bar shows snow grain sizes 
while the light blue bars show snowfall over the Sierra Nevada.
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estimates 𝐴𝐴 ∆𝛼𝛼 based on surface reflectance changes contributed by multiple LAPs [carbon, dust, and algae (Bair 
et al., 2021)], while our simulation does not consider the effects from brown carbon or snow algae (Kirchstet-
ter  et al., 2004; Painter et al., 2001; Thomas & Duval, 1995).

While we use satellite measurements as ground truth, we note that multiple factors may induce the uncertain-
ties in products, including off-nadir viewing effects, geolocation errors, misclassification between clouds and 
snow, and errors in the atmospheric model retrieving the aerosol optical depth (Bair et al., 2019, 2020; Stillinger 
et al., 2019). Extensive validations were conducted against site observations across the western US with RMSE 
values of 4%–6% in broadband snow albedo between SPIReS and site measurements (Bair et al., 2019). Besides, 

𝐴𝐴 ∆𝛼𝛼 from SPIReS is calculated using the difference between observed snow albedo and modeled clean snow 
albedo; the latter is associated with SGS retrieval, which could also be biased due to the abovementioned uncer-
tainties. In addition, Bair et al. (2020) have made a few assumptions to reduce uncertainties in pixels partially 
covered by snow: (a) Relatively pure pixels (snow cover fraction >0.90) are used to interpolate SGS to pixels 
partially covered by snow and therefore produce smaller SGS and (b) Pixels with small SGS (<400 μm) are 
assumed to be clean. Both assumptions may cause underestimation of LAP-induced 𝐴𝐴 ∆𝛼𝛼 .

3.3. LAP Effect Due To Snow Albedo Feedback

We assess how the snow albedo feedback plays a role in the snow darkening effects by comparing the WCCSaero 
with WCCSnoaero. Grid-averaged surface albedo changes are discussed afterward as snow cover is different in 
both experiments. The regional albedo decrease is 0.008 averaged across the SN, doubling the value (0.004) 
we found in LAPs’ instantaneous snow darkening effects (Figure 3b), due to the additional role of snow albedo 
feedbacks associated with snow aging and snow cover fraction. The albedo reduction is positively correlated 
with elevation and reaches 0.04 in the southeast SN (Figure 4a). The simulated albedo change is slightly higher 
than model estimates from L. Wu et al. (2018). The calibrated larger dust emission may produce a larger albedo 
degradation. Other factors such as different anthropogenic and fire emissions inventories and lateral boundary 
conditions could also play a role. The albedo change increases solar radiation absorption by about 8.5 W m −2 
during the midday, with the largest RF reaching 40 W m −2 within the high elevations of southern SN (Figure 4b). 
Averaged over a day, we find an RF of 3.1 W m −2 which spans between 0 and 14 W m −2. These estimated RF 
values are higher than those from Qian et al. (2009) and Hadley et al. (2010) which only considered the effects 
of BC in snow.

LAP-induced RF increases with elevation, and the peak values occur later at the higher elevations (Figure 4c). 
The RF is generally smaller than 15 W m −2 at low elevations (1,000–2,000 m), with the largest value occurring in 
late May and disappearing in mid-June as snowpacks disappear. The RF at mid elevations (2,000–3,000 m) peaks 
in mid-June (30 W m −2) and lasts until the end of the melting season. The RF at high elevations (>3,000 m) has a 
similar magnitude to mid elevations during March-May and significantly increases in June. Several RF peaks are 
found in June and July, which can be as high as 60–80 W m −2 and correspond well with the snow cover reduction 
(Figure 4c). As discussed before, the albedo changes between clean and dirty snow generally cause an RF of 
10–20 W m −2 (Figure 3c). The darkened surface absorbs more sunlight which further accelerates snow melting 
and causes stronger RF. Snow cover losses from this feedback produce an RF of 80 W m −2 at the highest eleva-
tions, which is a factor of 2–3 greater than the RF due to instantaneous snow darkening effects.

The LAP-induced RF decreases SWE throughout the melting season (Figure  4d), with the largest reduction 
(40 mm SWE) in late June. The decrease starts at low elevations (with higher temperatures) and expands to high 
elevations with later melting season (Figure S4 in Supporting Information S1). The SCF change is small until 
June and reaches its maximum in earlier July (Figure 4d). Due to LAPs and albedo feedbacks, runoff increases 
first and decreases in the late melting season. As floods in the Sierra Nevada basins are mainly produced by snow-
melt (Huang et al., 2022), the early shift of snowmelt timing is expected to shift snowmelt-driven peak runoff 
date to earlier by about 5 days.

In the bighorn sheep habitat, LAP-induced RF is generally smaller than 2 W m −2 during the accumulation season 
when deep snow impedes travel and negatively influences the bighorn sheep survival (Conner et al., 2018). Conse-
quently, the impact of LAPs in snow on the bighorn sheep is negligible. In the melting season, LAPs in snow 
have been shown to decrease SWE and snow depth in June by up to 20 and 70 mm, respectively. The decrease in 
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Figure 4. Difference of (a) surface albedo and (b) net shortwave radiation between WCCSaero and WCCSnoaero during midday 
(10:00–14:00 LT) averaged over April–July. The box plots illustrate the distribution of 𝐴𝐴 ∆𝛼𝛼 (RF) throughout the Sierra Nevada 
with the mean, maximum, and minimum values labeled on the left; The three contours represent the elevations of 1,000, 
2,000, and 3,000 m; (c) RF at different elevations and snow cover fraction change. (d) Change of SWE, SCF, and surface 
runoff between WCCSaero and WCCSnoaero.
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soil water supply reduces root-zone soil water content by 0.01–0.03 during June-August (Figure S5 in Supporting 
Information S1), with the largest reduction found in July. The decreasing soil water content tends to reduce forage 
productivity in early summer (Liu et al., 2019; Liu et al., 2021; Zhang et al., 2019), which deteriorates bighorn 
sheep diet quality and nutrition status (Stephenson et al., 2020). The nutrition status, typically measured by body 
mass, is related to the survival and the reproductive success of bighorn sheep (Festa-Bianchet et al., 1997).

4. Conclusions
The LAPs’ snow darkening effect has been extensively studied in snow-cover regions, yet the quantification in the 
Sierra Nevada is rare. This study employs a fully coupled meteorology-chemistry-snow model, WCCS, to investi-
gate the impact of LAPs on snow albedo over the Sierra Nevada (SN). Throughout the SN, WCCS approximately 
reproduces the observed aerosol spatial patterns and realistically simulates the spatial distribution and temporal 
evolution of snow cover and SWE. The simulation shows that snow albedo is reduced by 0.013 (0–0.045) during 
the ablation season due to LAPs in snow, producing a radiative forcing of 4.5 W m −2 (0–14.6 W m −2). Despite 
the lowest AOD in the southeast SN, the largest RF is found there as the higher elevations receive stronger solar 
irradiance during the ablation period. The model underestimates snow albedo degradation compared to remotely 
sensed retrievals (0.016 in SPIReS) at the higher elevations, which may be due to uncertainties in snow impurity 
concentration, insufficient snow aging process, and unrealistically small grain sizes for new snow.

The darkened snow absorbs more sunlight which accelerates melting and exposure of darker surfaces, leading to 
the well-known “snow albedo feedback.” With snow albedo feedbacks, LAPs induce an RF of 8.5 W m −2 during 
the melting season, with the largest RF reaching 80 W m −2 in late June. The RF causes a decrease of SWE by 
40 mm, shifting the runoff peak earlier.

Data Availability Statement
The PM2.5 and aerosol surface measurements are acquired from U.S. EPA at https://www.epa.gov/
outdoor-air-quality-data/download-daily-data and IMPROVE sites at http://vista.cira.colostate.edu/Improve/
monitoring-site-browser. SNODAS datasets are from the National Snow & Ice Data Center (NSIDC) at 
https://nsidc.org/data/g02158; SPIReS dataset is available at https://snow.ucsb.edu/index.php/remote-
ly-sensed-products/. We uploaded the data used in this paper on Zenodo: https://doi.org/10.5281/zenodo.5914858.
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